4380. Proposed by George Apostolopoulos.

Let a, b and c be the side lengths of a triangle ABC with inradius r and circumradius R. Prove that

$$a^2 \tan \frac{A}{2} + b^2 \tan \frac{B}{2} + c^2 \tan \frac{C}{2} \le \frac{3\sqrt{3}R^3(R-r)}{2r^2}.$$

We received 11 submissions, including the one from the proposer, all correct. We present two solutions, the second one of which gives a sharper inequality.

Solution 1, by Kee-Wai Lau.

Let S denote the semiperimeter of triangle ABC. The following identities and inequalities are all well known:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \tag{1}$$

$$\sin A \cos A + \sin B \cos B + \sin C \cos C = \frac{rS}{R^2}$$
 (2)

$$R \ge 2r$$
 (Euler's Inequality) (3)

$$s \le \frac{3\sqrt{3}R}{2} \tag{4}$$

By (1) we have

$$a^{2} \tan \frac{A}{2} = 4R^{2} (\sin^{2} A)(\tan \frac{A}{2})$$

$$= 4R^{2} (\sin A)(2 \sin \frac{A}{2} \cos \frac{A}{2})(\tan \frac{A}{2})$$

$$= 8R^{2} (\sin A)(\sin^{2} \frac{A}{2})$$

$$= 4R^{2} (\sin A)(1 - \cos A).$$

Similarly, $b^2 \tan \frac{B}{2} = 4R^2(\sin B)(1 - \cos B)$ and $c^2 \tan \frac{C}{2} = 4R^2(\sin C)(1 - \cos C)$. Hence, by (1), (2), (3), and (4) we have

$$\sum_{cyc} a^2 \tan \frac{A}{2} = 4R^2 \Big(\sum_{cyc} \sin A - \sum_{cyc} \sin A \cos A \Big) = 4R^2 \Big(\frac{a+b+c}{2R} - \frac{rs}{R^2} \Big)$$

$$= 4s(R-r)$$

$$\leq 6\sqrt{3}R(R-r)$$

$$= \frac{3\sqrt{3}R(2r)^2(R-r)}{2r^2}$$

$$\leq \frac{3\sqrt{3}R^3(R-r)}{2r^2}$$

and we are done.

Crux Mathematicorum, Vol. 45(6), July 2019

Solution 2, by Arkady Alt.

We prove the inequality that

$$\sum_{cuc} a^2 \tan \frac{A}{2} \le 6\sqrt{3}R(R-r)$$

which is sharper than the proposed result since

$$6\sqrt{3}R(R-r) \le \frac{3\sqrt{3}R^3(R-r)}{2r^2} \iff 2r \le R$$

which is Euler's Inequality.

Using the known results that

$$\tan \frac{A}{2} = \frac{r}{s-a}, \quad \sum_{cuc} \frac{a}{s-a} = \frac{4R-2r}{r} \quad \text{and} \quad s \le \frac{3\sqrt{3}R}{2},$$

we obtain

$$\sum_{cyc} a^2 \tan \frac{A}{2} \le 6\sqrt{3}R(R-r) \iff$$

$$\sum_{cyc} \frac{a^2}{s-a} \le \frac{6\sqrt{3}R(R-r)}{r} \iff$$

$$\sum_{cyc} \left(\frac{a^2}{s-a} + a\right) \le \frac{6\sqrt{3}R(R-r)}{r} + 2s \iff$$

$$\sum_{cyc} \left(\frac{sa}{s-a}\right) \le \frac{6\sqrt{3}R(R-r)}{r} + 2s \iff$$

$$s \cdot \left(\frac{4R-2r}{r}\right) \le \frac{6\sqrt{3}R(R-r)}{r} + 2s \iff$$

$$s(2R-r) \le 3\sqrt{3}R(R-r) + sr \iff$$

$$2s(R-r) \le 3\sqrt{3}R(R-r) \iff$$

$$s \le \frac{3\sqrt{3}R}{2}$$

and the proof is complete.

4381. Proposed by Mihaela Berindeanu.

Let ABC be an acute triangle with circumcircle Γ_1 and circumcenter O. Suppose the open ray AO intersects Γ_1 at point D and E is the middle point of BC. The perpendicular bisector of BE intersects BD in P and the perpendicular bisector of EC intersects CD in Q. Finally suppose that circle Γ_2 with center P and radius PE intersects the circle Γ_3 with center Q and radius QE in X. Prove that AX is a symmedian in $\triangle ABC$.